Re-Evaluating Neonatal-Age Models for Ungulates: Does Model Choice Affect Survival Estimates?
نویسندگان
چکیده
New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001-2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly versus daily) for estimating survival.
منابع مشابه
On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models
There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...
متن کاملSpatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients
In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...
متن کاملEvaluation of Sustainability of the Foreign Exchange Rate Regimes in Iran Based on Duration Models
Iran's economy as a developing and oil economy, needs to choose appropriate exchange rate regime is to achieve its economic goals. Some characteristics such as little diversity in production and trade, weak and underdevelopment financial markets and other features of the Iranian economy, Requires the choice of exchange rate regime be based on the features of the country. However, the choice of ...
متن کاملDoes ethnicity affect survival following colorectal cancer? A prospective, cohort study using Iranian cancer registry
Background:The present study compared the differences between survivals of patients with colorectal cancer according to their ethnicity adjusted for other predictors of survival. Methods: In this prospective cohort study patients were followed up from definite diagnosis of colorectal cancer to death. Totally, 2431 person-year follow-ups were undertaken for 1127 colorectal cancer patients on...
متن کاملاستفاده از مدل چندجملهای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده
Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...
متن کامل